
International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

107

Load testing of HELIDEM geo-portal: an OGC open
standards interoperability example integrating WMS, WFS,

WCS and WPS

Massimiliano Cannata 1, Milan Antonovic 1, Monia Elisa Molinari 2

1 University of Applied Sciences and Arts of Southern Switzerland, Department
for Environment Constructions and Design, Institute of Earth sciences,

massimiliano.cannata@supsi.ch , milan.antonovic@supsi.ch

2 Politecnico di Milano, DICA, Laboratorio di Geomatica, Como Campus,
monia.molinari@polimi.it

Abstract

This paper presents a load testing of the HELIDEM geo-portal, which is an example
of interoperability between a number of standard geospatial services as defined by
the Open Geospatial Consortium. The portal was developed within the European
project HELIDEM (www.helidem.eu) with the aim of valorizing the main project
output which is a cross-border digital terrain model. The portal aims at fostering its
diffusion and usage trough easily accessible tools. The DTM covers the alpine area
located between Southern Switzerland (Canton Ticino) and Northern Italy
(Lombardy and Piedmont Regions). From a technological point of view, the server-
side component of the portal is based on a Service Oriented Architecture
implemented using the open source software ZOO-Project, GRASS GIS and
Geoserver; the client-side component is a Web interface based on CSS3 and
HTML5 trough the usage of the ExtJS framework and the OpenLayers software.
The presented solution is a mix of technologies and software, some of which are
considered, within the open source for geospatial community, mature and robust
while others are considered promising but not sufficiently tested yet. For this
reason this research conducted a load test over concurrent users in order to verify

This work is licensed under the Creative Commons Attribution-Non commercial Works 3.0 License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a
letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

DOI: 10.2902/1725-0463.2014.09.art5

mailto:massimiliano.cannata@supsi.ch
mailto:milan.antonovic@supsi.ch
mailto:monia.molinari@polimi.it
http://creativecommons.org/licenses/by-nc-nd/3.0/

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

108

the robustness, quality and performance of the system and to identify eventual
bottlenecks. Test results didn’t register any runtime exception confirming the good
quality of the implemented system and underlying software. Nevertheless,
performance and response time exponentially degrades with increasing number of
concurrent users, area of analysis and process complexity. Finally, the test
confirms that the implemented solution is robust, in fact no system failure was
recorded during the analysis.

Keywords: OGC, WMS, WCS, WPS, load testing

1. INTRODUCTION

Digital Terrain Models (DTMs) are a representation of the natural terrain surface
by means of terrain altitude expressed in orthometric heights. In practice, these
DTM are widely used to extrapolate derived information which is useful in
supporting a large number of activities, including land use planning and
engineering design (Vieux, 2001; Wilson, 2000). The derivation of contour lines or
of profiles are certainly some of the most basic and common operations, but also
the evaluation of terrain surface derivatives like slopes, aspects, curvature are very
common. Watershed analysis from DTM is a more specific task which is generally
performed by hydrologist, but also used for land planning and infrastructure design.
These kinds of processing are common features of modern Geographical
Information System software (GIS) which, although nowadays available to a larger
public if compared with the 90s, still remain accessible to specialized personnel
only.

The main scope of the HELIDEM project (Helvetia-Italy Digital Elevation Model)
was the creation of a unified digital terrain model and geoid, for the Alpine and
Sub-Alpine area on the border between Italy and Switzerland, correctly geo-
referenced in the three dimensions. The project was funded in the frame of the
European Regional Development Fund within the Italy-Switzerland cooperation
program and run from September 2010 to September 2013. More details in
Antonovic et al. (2014).

The project leads to two new datasets: a DTM and a geoid of the cross-border
region which includes northern Lombardy (Italy), northern Piedmont (Italy), Canton
Ticino (Switzerland) and southern parts of the Canton of Graubünden (Switzerland)
and the Canton of Valais (Switzerland). The DTM was calculated in the ETRF2000
reference frame in geographic coordinate system with a resolution of 4*10-4
degrees (about 22 m in latitude and 15 m in longitude) and maintaining the general

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

109

accuracies of the original data (3m in Switzerland, 10m in Lombardy and 5m in
Piedmont) (Biagi et al, 2014). The geoid was derived on the same region combining
the Italian geoid ITALGEO2005 and the Swiss geoid CHGeo2004 with the
inclusion of GOCE (Barzaghi et al, 2006) data for solving the height datum problem.
Both of them are distributed for free under the IODL v2.0 license. Nevertheless, it
has to be noted that they are not official datasets: neither for Italy nor for
Switzerland.

A secondary, but not less important, goal of the project is the experimentation of
the DTM, its diffusion and valorisation trough easily accessible tools. In view of this
least aim, the authors conducted research and development to the creation of a
geo-spatial portal which could make the DTM and some of the commonly used
derived data easily accessible. The requirement analysis, conducted internally
within the project team, leads to the identification of the following requisites:

 Accessing data and derived data without the need of any software or
components (plug-in) except of a Web Browser;

 Flexibility in the selection of the area of interest to be elaborated;

 Capability of download or visualize the results of an elaboration;

 Capability to derive data in the desired coordinate reference system;

 Accessing at contour, profiles, watershed, derivatives analysis and data
extraction tools.

2. OWS: OPEN WEB SERVICES

In the last years, thanks to the large diffusion of Internet and the growing
development of open standards related to geospatial sector, today we can access
to a number of technologies and standard services which are well established and
tested in productive environments. Yet, some of the most recent standards and
related software are less verified and applied.

Among the available options, those defined by the Open Geospatial Consortium
(OGC, www.opengeospatial.org) are certainly among some of the most used
solutions for Web mapping services. Those services use the HTTP protocol, and
in particular the GET and POST methods, to communicate with servers and
specific XML schemas to encode exchanged information. In few cases, OGC
standard services contemplate the usage of the SOAP (Box et al, 2000) protocol
and of binary data (also in streaming) as a response.

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

110

In the next sections a brief description of a series of standards which have been
selected to fulfil the HELIDEM geo-portal requirements are reported.

Web Mapping Service (WMS) (De la Beaujardiere, 2006) enables the access to
geospatial data in the form of images throughout Internet. Received images
represent cartographic elements rendered according to specific requested setting
parameters. WMS is widely used and supported by almost all of the available GIS
software and is a mature technology.

Web Feature Service (WFS) (Vretanos, 2010) defines methods and formats to
request, also using spatial and semantic filters, and transmit geospatial vector data
through the Internet. With respect to the WMS, this standard permits to receive the
actual data, and not only its graphical representation on an image. Moreover, this
standard enables the capability of the user to remotely modify the data by means
of transactional requests. Responses are always in geospatial vector formats like,
for example, GML, KML or SHP.

Web Coverage Service (WCS) (Baumann, 2010a) can be considered similar to
WFS with the difference that it handles distributed spatial data only. The standard
defines rules to distribute, according to user’s requests, raster data. Data could
eventually be cropped, re-projected, resampled or converted in one of the
supported raster formats like, for example, GeoTiff or ESRI ASCII grid.

Web Processing Service (WPS) (Schut et al, 2008) permits to provide geospatial
processing capabilities over the Web. Thanks to this standard predefined
processes or algorithms are exposed to Web users similarly to typical desktop GIS
modules. The GetCapabilities and DescribeProcess requests allow to identify
offered processes and their inputs and outputs names and types; the Execute
requests allows to run a selected process.

3. THE HELIDEM SYSTEM

The HELIDEM system implements a Service Oriented Architecture (SOA) based
on the OWSs presented in the previous chapter 2. The schematization of the
implemented architecture, which is represented in Figure 1, is based on four OGC
services that are deployed in the Cloud. Among them, the WPS only interacts
directly with the others three by using them as input data provider (WCS) or as
output data dispatching services (WMS, WFS). As well as the HELIDEM portal all
the services are freely accessible on the Web, and can be consumed as stand-
alone service to be integrated in other contexts: for example desktop GIS or
specific apps for different devices (tablets, smartphones, etc.).

The implemented OWSs have been deployed using different servers which are
physically located at the Institute of Earth Science at SUPSI in Lugano and at the

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

111

Geomatics Laboratory at the Polytechnics of Milan in the Como Campus. Figure
2 represents the technological stacks that have been used respectively for the
implementation of the OWSs component (server side applications) and the
HELIDEM geo-portal (client side application).

The server side component of the system is based on Linux OS (Ubuntu server)
and Apache 2 Web server (The Apache Software Foundation, 2013).

Figure 1: Schematization of the HELIDEM System Architecture

Figure 2: Software and Languages Stack Used to Develop the Server Side (on the
left, Figure A) and The Client Side (on the Right, Figure B) of the HELIDEM System.

portale
Helidem

apps

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

112

The data services (WMS, WFS and WCS) rely on Geoserver (Youngblood, 2013)
deployed in the Tomcat 7 application server (The Apache Software Foundation,
2013) and served by Apache HTTP server. Geoserver is a mature solution word
widely used in large scale projects and in production systems, for example by
NOAA or Ordinance Survey. It mostly relies on GeoTools libraries (Turton, 2008)
and is developed in JAVA language (Gosling et al, 2013).

The reliability of Geoserver is confirmed by the fact that it has the status of official
Open Source Geospatial Foundation (OSGeo) project. One of OSGeo objectives
is to group under its umbrella a number of Free and Open Source Software for
Geospatial (FOSS4G) projects which have shown a collaborative development
community and a high quality code: such a kind of software is promoted as OSGeo
project. This status can only be achieved passing the incubation process which
carefully reviews code and community (Brovelli et al, 2012)

The processing servers (WPS) take advantage of the Zoo-project software (Fenoy
et al, 2013) which relies on CGI. The selection of this software to implement the
WPS component of the system is because it has already successfully been used
in conjunction with GRASS GIS version 7 and because it is with respect to other
WPS solution less investigated. In fact, Zoo-project is quite recent and, at the time
of writing, is under the OSGeo incubation process.

ZOO-project is a framework to create WPS compliant services; it is composed by
three components (see Figure 3): (i) the ZOO kernel that is the engine, written in
C (International Organization for Standardization and International Electrotechnical
Commission, 1999) that enable the managing and chaining of different processes
written in different programming languages; (ii) the ZOO services that implements
the processes by means of a configuration file and function implementing the
process algorithms in one of the supported languages (C, Python, Perl, PhP,
JavaScript, Java, Fortran); and (iii) the ZOO API that is a JavaScript library to easy
service chaining and interface development.

In HELIDEM, the WPS processes have been coded in Python (Van Rossum, 2007)
taking advantages of the python-requests library and of the modules of the GIS
GRASS 7 (Neteler et al, 2012) which are generally coded in C. The processes
results are always returned as simple output type (link to a resource), so that they
are of simple integration in third parties.

The HELIDEM geo-portal, as overviewed in Figure 2 is based on the most modern
technologies such as CSS 3 and HTML 5 (Hogan, 2011) and JavaScript (Flanagan,
2006) through a number of libraries. ExtJS (Zhang et al, 2010) was used to
graphically design the portal since this library to easy access advanced graphical
elements guaranteeing cross browser compatibility; OpenLayers (Hazzard, 2011)
is used to create the map viewer which allows for dynamically navigation of

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

113

geospatial data; GeoExt (GeoExt Community, 2010) which combining OpenLayers
and ExtJS provides additional features and controls; proj4js (Adair et al, 2012)
used to provide on-the-fly re-projection of vectors coordinates.

Figure 3: ZOO-Project Components and Interactions. (Source: www.zoo-
Project.Com, © Nicolas Bozon)

Based on the integration of these libraries and technologies the HELIDEM portal
was designed and its graphical interface implemented as shown in Figure 4. The
interface is separated in three sections: a left-side panel which presents all the
offered processing capabilities, a right-side map panel to represent contextual
base map and processing results and an up-side panel which shows general
information on the selected process, data accessibility and copyrights.

4. HELIDEM PROCESSES

In Figure 4 the left-side panel shows a number of processing capabilities that are
offered by the HELIDEM portal. Those processes have been implemented in the
ZOO-project and offered by means of the WPS standard. The implemented Python
code takes advantage of newly developed classes which enables the interaction
with the GIS GRASS 7 and Geoserver.

The processes are thus orchestrated by the ZOO-project process core while the
core of the processing is designated to GRASS and then the results are pushed
into Geoserver for easy access and map navigation by means of WMS and WFS
capabilities. To successfully connect Python, or other languages, with GRASS the
environment variable of GRASS and the integrity of concurrent operation shall be
guaranteed (Cannata et al, 2012). To publish the geospatial data resulting from the
process we took advantage of the RESTful API (Diaz et al, 2011) of Geoserver and
of the python-requests (Reitz, 2012) library.

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

114

Figure 4: HELIDEM Geoportal. Base Maps from Google.

In order to achieve the automatic publishing of results, each implemented process
includes a sub-process that:

 Export the output data in a specific formats (shapefiles for vectors and GeoTiff
for raster) in a directory accessible by Geoserver.

 Add the data to Geoserver creating the store and the coverage with the
RESTful API.

 Create the Style Layer Descriptor (SLD) file using specifically developed
commands to export the GRASS styles in SLD.

 Upload and assign the style to the coverage with Geoserver RESTful API.

Albeit the used version of ZOO-Project supports the publication of results of a
process as WMS, WFS or WCS service, this feature is available statically setting
the ZOO configuration file (zcfg). Dynamic styling with SLD is not supported.

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

115

Together with the desire of testing the Geoserver RESTful API this is the reason
why we decided not to use this ZOO-Project feature.

In the next sections the processes accessible through the portal are shortly
described relevant modules, inputs and outputs.

4.1. Data Extraction

This feature has been implemented taking direct advantage of the WCS capability,
in fact, once defined the bounding box and the coordinate system, the JavaScript
compose a getCoverage request to the WCS server hosting the DTM. The result
is available to the user as download.

4.2. Coordinate Conversion

This capability is intended to convert a user-drawn vector feature in different
coordinate system. This could be useful, for example, to get the bounding box or
the polygon of an area of interest in Well Known Text (WKT) format. The derived
coordinates are indicative, in the sense that this feature uses general conversion
parameters as defined in EPSG definition and therefore is not suitable for high
precision transformations. No server processing is involved in this module and all
the jobs are performed at browser level taking advantage of the proj4js library.

4.3. Contour lines

This feature is actually implemented in two WPS processes: given a defined
elevation model the first allows for the extraction of contour lines at a predefined
list of altitudes (Table 1 and Table 2) while the second at defined intervals among
two extremes. The processes are written in Python and take advantage of r.contour
module of GRASS 7.

Table 1: Contour Levels at Defined Altitudes: inputs and outputs. (Type: i/s = input
type string, i/d = input type decimal, o/U = output type URI, o/s = output type string,

o/dt = output type datetime; M = mandatory, N = multiplicity).

Parameter Type Description M N

covermap i/s Link to a DTM in geoTiff Y 1

coverSRS i/s EPSG code (EPSG:XXXX) Y 1

bbox i/s BBOX (EWKT) Y 1

levels i/d CSV list of values Y n

oSRS i/s EPSG code Y 1

oformat i/s
output format: GML, KML or Shapefile
(default)

N 1

odata o/U Link to the contour level zipped file Y 1

WMS_URL o/U WMS address to access the results Y 1

WFS_URL o/U WFS address to access the results Y 1

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

116

layerName o/s Laye name to be used in WMS e WFS Y 1

Expiration Time o/dt Exipration date of the results Y 1

message o/s Additional process information Y 1

Table 2: Contour Levels at Defined Intervals: inputs and outputs. (Type: i/s = input
type string, i/d = input type decimal, o/U = output type URI, o/s = output type string,

o/dt = output type datetime; M = mandatory, N = multiplicity).

Parameter Type Description M N

covermap i/s Link to a DTM in geoTiff Y 1

coverSRS i/s EPSG code (EPSG:XXXX) Y 1

bbox i/s BBOX (EWKT) Y 1

step i/d interval Y n

minLevel i/d Minimum altitude N 1

maxLevel i/d Maximus altitude N 1

oSRS i/s EPSG code Y 1

oformat i/s
out format: GML, KML or SHP
(default)

N 1

odata o/U Link to the contour level zipped file Y 1

WMS_URL o/U WMS address to access the results Y 1

WFS_URL o/U WFS address to access the results Y 1

layerName o/s Layer name to be used in WMS e WFS Y 1

Expiration Time o/dt Expiration date of the results Y 1

message o/s Additional process information Y 1

4.4. Profiles

Provided a linestring this process allows to extract the altimetric profile along the
path as CSV file of 3D coordinates and PNG image. This feature is based on the
r.profile module of GRASS combined with the Python library matplotlib (Hunter,
2007). Process parameters are listed in Table 3.

Table 3: Profile extraction process: inputs and outputs. (Type: i/s = input type
string, i/d = input type decimal, o/U = output type URI, o/s = output type string, o/dt

= output type datetime; M = mandatory, N = multiplicity).

Parameter Type Description M N

covermap i/s Link to a DTM in geoTiff Y 1

coverSRS i/s EPSG code (EPSG:XXXX) Y 1

bbox i/s BBOX (EWKT) Y 1

coord i/d Linestring in EWKT format Y n

oSRS i/s EPSG code Y 1

oformat i/s
output format: GML, KML or Shapefile
(default)

N 1

outImage o/U PNG of the profile Y 1

outText o/U CSV of 3D coordinates Y 1

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

117

Expiration Time o/dt Expiration date of the results Y 1

Message o/s Additional information Y 1

4.5. Elevation Derivatives

Using the module r.slope.aspect this process generates raster maps of slope,
aspect, curvatures and partial derivatives from an elevation raster map. Aspect is
calculated counter clockwise from east. Process parameters are listed in Table 4.

Table 4: Elevation derivative process: inputs and outputs. (Type: i/s = input type
string, i/d = input type decimal, o/U = output type URI, o/s = output type string, o/dt

= output type datetime; M = mandatory, N = multiplicity).

Parameter Type Description M N

covermap i/s Link to a DTM in geoTiff Y 1

coverSRS i/s EPSG code (EPSG:XXXX) Y 1

bbox i/s BBOX (EWKT) Y 1

oSRS i/s EPSG code Y 1

slope i/s Create slope map (yes/no) N 1

format i/s Slope format (degrees/perc.) N 1

aspect i/s Create slope map (yes/no) N 1

pcurv i/s Create slope map (yes/no) N 1

tcurv i/s Create tangential map (yes/no) N 1

dx, dy, dxx, dyy,
dxy

i/s Create derivative map (yes/no) N 1

odata o/U Zip of output maps Y 1

slopeLayer o/U Layer name Y 1

aspectLayer o/U Layer name Y 1

pcurvLayer o/U Layer name Y 1

tcurvLayer o/U Layer name Y 1

dxLayer, o/U Layer name Y 1

dyLayer, o/U Layer name Y 1

dxxLayer o/U Layer name Y 1

dyyLayer o/U Layer name Y 1

dxylayer o/U Layer name Y 1

WMS_URL o/U WMS address to results Y 1

WFS_URL o/U WFS address to results Y 1

Expiration Time o/dt Expiration date of the results Y 1

message o/s Additional process information Y 1

4.6. Watershed Analysis

This process allows to conduct a number of analysis of a basin using the r.basin
command (Di Leo and Di Stefano 2013) specifically ported during this work at the
version 7 of GRASS and integrated with a the newly developed modules named
r.nearest.coord, which find the coordinates of the nearest cell having value higher
of a threshold, and r.out.sld, which produce valid style descriptor.

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

118

Given a DTM the process evaluate the flow accumulation and flow direction maps
(Tarboton and Ames, 2001) using one of the possible approaches: the Single Flow
Direction (SFD) which allows the water to flow in one cell only using the maximum
slope criterion or the Multiple Flow Direction (MFD) which allows the water to flow
in all the neighbour lower cells at the same time proportionally to the slope. SFD
approach is further subdivided in two algorithms named D8 if all the neighbour cells
are considered or D4 if only the 4 neighbour cells along the cardinal directions are
considered.

Combining the calculated flow accumulation and flow direction maps with the
coordinate of the closing section of the watershed and a threshold value of the
accumulation, the process calculates the basin and the hydrographic network.
These maps are further used in the process to perform a number of analyses and
elaborations that leads to the morphological and hydrological characterization of
the watershed through a number of outputs including raster maps, plots and
reports.

The produced raster maps are: hierarchical classification of the hydrographic
network according to Horton, Strahler, Hack and Shreve (Gangodagamage et al,
2011), distance to outlet and the length of the slopes. The process, using the
r.out.sld module, produces for each map a SLD (Lupp, 2007) which defines
symbolization and colouring of layers.

The created plots are: hypsographic and hypsometric curves and width function
(Strahler, 1957). The reports are: CSV file and PDF report with a number of
morphometric parameters, including centre of gravity, area, perimeter, mean slope,
length of the directing vector, prevalent orientation, characteristic altitudes, shape
factors, topological diameter, magnitude, Horton ratios and concentration time,
drainage density. The PDF have been produced using the pyUNO library
(OpenOffice.org, 2010) which allows to produce documents using the libreoffice
API. Process parameters are listed in Table 5.

Table 5: Watershed analysis process: inputs and output. (Type: i/s = input type
string, i/d = input type decimal, o/U = output type URI, o/s = output type string, o/dt

= output type datetime; M = mandatory, N = multiplicity).

Parameter Type Description M N

covermap i/s Link to a DTM in geoTiff Y 1

coverSRS i/s EPSG code (EPSG:XXXX) Y 1

bbox i/s BBOX (EWKT) Y 1

coord i/d Point in EWKT format Y 1

threshold i/s Flow accumulation threshold Y 1

method i/s Flow direction algorithm Y 1

flat_area i/s Beatify of flat area Y 1

oSRS i/s EPSG code Y 1

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

119

parameters o/U CSV report Y 1

pdf_report o/U PDF report Y 1

outmaps o/U Zip of output raster maps Y 1

ipsographic_cur
ve

o/U PNG of hypsographic curve Y 1

ipsometric_curv
e

o/U PNG of hypsometric curve Y 1

width_function o/U PNG of width function Y 1

WMS_URL o/U WMS address to access the results Y 1

WFS_URL o/U WFS address to access the results Y 1

networkLayer o/s WMS/WFS River network layer name Y 1

dist2outLayer o/s WMS/WFS distance to outlet layer name Y 1

accumulationLa
yer

o/s
WMS/WFS flow accumulation layer
name

Y 1

hillslope_distan
ceLayer

o/s WMS/WFS hillslope length layer name Y 1

hackLayer o/s Hack classification layer name Y 1

hortonLayer o/s Horton classification layer name Y 1

shreveLayer o/s Shreve classification layer name Y 1

strahlerLayer o/s Strahler classification layer name Y 1

Expiration Time o/dt Expiration date of the results Y 1

message o/s Additional process information Y 1

5. HELIDEM GEOPORTAL

The HELIDEM geo-portal (http://geoservice.ist.supsi.ch/helidem) is the official
access point of the project to the produced data. Moreover, it provides access to
the previously described processes, which even if available as stand-alone
services, are best suited to be chained by means of the portal business logic.

When the user selects a desired process (see Figure 5), the left-side panel allows
to set the required inputs parameters by means of selecting available options,
inserting values and text, or interacting with the map to derive geospatial features
like bounding boxes, point or polylines; it worth to be noted that all the geospatial
features are also editable as text box, so that expert users could define these
parameters by means of known coordinates.

When the process is executed, it runs asynchronously and the server keep
updated the execute response document indicating the current status of the
process; the client periodically check for process status description, so that the
user is aware if the process is running, what is the approximate percentage of
execution and eventual fails.

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

120

Figure 5: Example of Processing Interface with User Inputs on the Left-Side Panel
And Results In The Top-Right Frame And On Map.

When the process execution ends, results are made available within a collapsible
frame on top right of the map: link to zipped layers, layer names, WMS and WFS
URLS, images and expiration date are opportunely reported. At the same time,
derived geospatial data are represented in the map as additional WMS layer; in
case of multiple layers in the outputs (see Figure 6), the user has the ability to
select one of them for its visualization.

6. LOAD TESTING

Load testing is performed to determine a system’s behaviour under both normal
and anticipated peak load conditions. In the next paragraphs system configuration,
test settings and results are presented.

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

121

Figure 6: Example of Processing Interface with Multiple Output Layers and
Different Output Types.

As previously described the HELIDEM geo-portal relies on a server-side
component composed of several OWS services which are located on two different
servers: a server for data processing and results dispatch implementing the WPS,
WMS and WFS (herein after referred to as “WPS server”) and a server for DTM
serving implementing the WCS (herein after referred to as “WCS server”). Both are
virtual machines set up using Oracle VM VirtualBox (Romero, 2010) whose
characteristics are summarized in Table 6.

While the Geoserver instance has 2 GB of RAM assigned the ZOO-project does
not have any pre-allocated memory and thus the limit is that of the operating
system (4.5 GB including SWAP memory).

The load testing has been conducted using an open Source framework named
Locust (Heyman et al, 2011). Locust is a scalable and distributed framework

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

122

developed in Python and available under the MIT-license. This framework enable
the set up of a load test under different scenarios identified by the number of
concurrent users and the hatch-ratio which indicate the user spawned for seconds.

Table 6: Characteristics of the Servers Used For the Load Testing.

parameter WPS server WCS server

OS
Ubuntu server
version 12.04, 32
bit

Ubuntu server
version 12.04, 32
bit

RAM 4GB 4GB

CPU
Intel(R) Xeon(R)
CPU E5-2650 0
@ 2.00GHz

Intel(R) Xeon(R)
CPU E5-2650 0
@ 2.00GHz

N° of
processors

6 4

Disk size 100GB 100GB

Locust test requires a “locustfile” which is a normal python file that overrides the
TaskSet and Locust classes. The extension of the TaskSet class defines the user
behaviors by mean of a series of tasks the simulated user would perform: generally
those tasks are HTTP POST and GET requests. The extension of the Locust class
represents one user which is defined trough few attributes: the task_set which
specifies the operations to be considered (the implemented extension of the
TaskSet class), the min_wait and max_wait which are respectively the minimum
and maximum time, in milliseconds, that a simulated user will wait between
executing each task. Beyond the standard HTTP error status codes (400-499)
automatically detected by Locust, exception responses which are returned with a
success HTTP status code (e.g. 200) can be opportunely caught and reported as
task failure.

Operationally, when a test is started, each instance of the Locust classes (each
concurrent user) start calling its task_set which pick one of the tasks and call it. It
will then wait a random number of milliseconds, between min_wait and max_wait,
and then launch a new task, and so on.

For the scope of the study, because the HELIDEM geo-portal is essentially an
interface to a number of geo-processing features offered through the WPS that
orchestrate other services, the load testing is focused on the implemented WPS
processes. Thus, the load test was conducted setting up a single user type –
HELIDEM geo-portal user – performing four different tasks on four different
processing areas. Tasks are contour extraction, profile calculation, basin analysis
and derivative elaboration; areas as reported in Table 7 were sampled in order to
include large, medium, small and very small basins with respect to the Alpine

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

123

morphology. The combination of task and area for each request is selected
randomly.

Table 7: Processing Areas Used in Load Testing; Bbox Is Expressed As [minx,
miny, maxx, maxy] in CH1903 Coordinate System and areas in sqkm.

Area
name

Area bbox Basin type

Maggia 1236
673126,106645,
706994,143139

Large

Verzasca 488
694828,114091,
712831,141198

Medium

Breggia 210
719542,76682,
733188,92109

Small

Cama 43
733520,120819,
740044,127433

Very small

Different load tests were conducted simulating respectively 1, 2, 4, 8, 16, 32 and
64 concurrent users; each test was run for approximately 2 hours. The low number
of simulated concurrent users depends on the fact that this is a specific portal
expected to be used by a limited number of users from specific sectors and
therefore with a very limited traffic with respect to other services like those offered
by social network where millions of concurrent users are easily registered.
Because of the expected duration of the processes (several tenths of a second),
the max_wait was set to 2 minutes while the min_wait was set to 5 seconds; used
hatch-ratio value was 1.

 Figure 7 shows the average response time for the different scenarios of concurrent
users without discrimination of request type. This plot clearly shows that the quality
of the system is very high in fact no exception were raised over a total number of
3380 requests. Nevertheless, the performance of the system quickly degrades with
increasing number of concurrent users, particularly evident with more than 16
users.

Plots A, B, C and D in Figure 8, illustrate the response time in milliseconds for each
analysed process (Locust’s task) over the growing number of concurrent users.
The fastest process is the extraction of profile with response time that varies from
2.5 seconds (one users and very small basin) to almost 2 minutes (64 users and
large basin) with an average of 18 seconds. The Contours extraction registered a
response time between a minimum of 3.6 seconds and a maximum of 3 minutes
with an average of 26.9 seconds. The time required by the user to get a response
from the server in case of calculation of elevation derivative ranges from 8.4
seconds to 17.4 minutes with an average of 2.2 minutes. The longest process is
the hydro-morphological analysis of watershed where a minimum of 24 seconds,
a maximum of 23.5 minutes and an average of 3.15 minutes were recorded. WCS

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

124

service response time (see plot E of Figure 8) vary smoothly with increasing
concurrent users with respect to WPS processes. In plot F of Figure 8, the cost of
data retrieval from WCS with respect to the total processing time for the watershed
analysis is represented. The plot F shows that the WCS process is almost
negligible in terms of response time.

It worth to be noted that during the first phase of test settings we have experienced
some issues related to disk space. In fact, results are stored for 24 hours and tend
to exhaust disk space as the number of requests increase. Nevertheless, even if
exception was raised, the system showed a good robustness to cope with errors
during execution and to continue to operate despite anomalies: no crash and no
downtime were recorded.

Figure 7: Average Response Time during the Whole Test.

1 2 4 8 16 32 64

Average 28326 31705 29732 42239 52193 128932 303406

Exceptions 0 0 0 0 0 0 0

0

50000

100000

150000

200000

250000

300000

350000

A
v

e
ra

g
e
 r

e
s
p

o
s
n

s
e
 t

im
e
 [

m
il
li
s
e
c
o

n
d

s
]

General statistics

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

125

Figure 8. Load Testing Results. Variation of Response Time with Increasing
Concurrent Users for Different Implemented Processes (A-D) and For the WCS
Service (E). In Plot F The Cost Of WCS With Respect To Total Response Time For
The Case Of Watershed Analysis.

7. CONCLUSIONS AND DISCUSSIONS

This work has presented the realization of a geospatial portal based on OWSs
which uses WPS as the main component orchestrating WCS for data gathering
and WFS and WMS for result dispatch and visualization. Load testing has been

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

126

performed in order to understand the system behaviour under real case scenarios
and concurrent access.

Test results show that the system has a good robustness and good quality of
service; in fact no system failure and no exception response were registered.
Performances are relatively good if compared with desktop processing and
considering data loading times. Nevertheless, system response time exponentially
degrades with process complexity, increasing number of users and target areas
size. As a result, response time of WPS vary from about 2.5 seconds (to satisfy a
single user requesting an altimetric profile over a very small basin area) to more
than 20 minutes (to provide a watershed analysis over a large basin when 64
concurrent users are accessing the application).

Response time, as expected, is dependent on process algorithms complexity and
increases with it. This is confirmed by tests, in fact higher latency can be observed
from profile calculation to contour line extrapolation, to elevation derivatives
creation, to watershed analysis. Looking at a single process the causes of service
performance degradation are the presence of concurrent users and the size of the
elaboration area.

The size of the elaboration area affects the response time because it set the area
to be processed and / or because it defines the size of the data to be extracted and
downloaded. To better understand the influence of remote access to data in a
distributed system like this a WCS test was conducted. Results show that response
time is sensitive to the number of concurrent user, but it also shows that if
compared with WPS response time, it is slowly degrading. This means that, when
a higher number of concurrent users are operating its impact is reduced. In the
case of watershed analysis the WCS relative cost in term of time, decrease from
about 5% when a single user is accessing the system to about 0.7% with 64
concurrent users. Moreover, the relative impact of data gathering is depending on
the complexity of the process: in simpler processes like the profile extraction it
accounts in average for about the 25% of the whole process, in more complex
processes like basin analysis it is almost negligible counting for less than 3%.

From the previously presented considerations on data gathering cost, it can be
deduced that the most important cause of HELIDEM service performance
degradation is the concurrent processing. In particular, the bottleneck of this
system is the CPUs load. The CPU is also quickly exhausted: during the tests
starting from 16 users the CPUs usage was around 80% and from 32 users a
usage rate of 100% was observed.

A final consideration to be taken into account is the disk space. If results are made
available to users for a period, trough standard services and/or compressed
archive, then the disk may run out of space. This is particularly important when

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

127

long data availability periods are used and processes produce large data:
derivatives process in the case study outputs up to 10 raster maps and about 30
Mb of data for large basin. A combination between average size of process outputs,
length of the period of output availability and maximum number of request
expected in the same period should be used to define the required disk space.

To improve the performance of the system under intensive concurrent accesses,
the increase of computational power and disk space seems to be the natural
solution to override these limitations: a scalable cloud computing service, like the
Amazon Elastic Compute Cloud (Amazon EC2), could resolve the issue.

Nevertheless more research on process optimization should be conducted. For
example, it would be interesting to verify the impact of asynchronous programming
over response time; in fact it is a well-known approach to reduce the user waiting
time by freeing resources when are not needed (generally during I/O operations
like data download or file reading and writing) and making them available to other
requests in accordance with the non-blocking paradigm. Another interesting option
that could be investigated is the optimization of data storage, access and serving,
like the Rasdaman array database (Owonibi and Baumann, 2012). Finally, the
usage of Web Coverage Processing Service (WCPS) (Baumann, 2010b) instead
of the WCS shall also be tested to verify if accessing pre-processed data instead
of the raw DTM could increase the system efficiency.

In summary this research shows that the used software stack is robust and of good
quality and that response time for processing digital terrain model services, also
when complex operations are required, is reasonable when processing power is
balanced with the number of concurrent users.

8. ACKNOWLEDGMENTS

Our thanks to the HELIDEM project team for the collaborative work, the Geodesy
Division of swisstopo and to the UMUG office of the Canton Ticino for supporting
this project.

9. REFERENCES

Biagi, L., Caldera, S., Carcano, L., Lucchese, A., Negretti, M., Sansò, F. and M. G.
Visconti (2014). The HELI-DEM model estimation. ISPRS-International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 1: 15-20.

Antonovic, A., Belotti, P., Brovelli, M.A., Caldera, S., Campus, S., Cannata, M. and
M. G. Visconti (2014). “HELI-DEM: integrazione dei dati di altezza
transalpini fra Italia e Svizzera”, In SIFET 5/2013 Ludovico Biagi, Ambrogio

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

128

Maria Manzino, Fernando Sansò (Eds.) SIFET Società Italiana di
Fotogrammetria e Topografia.

Barzaghi, R., Conte, R., Falletti, G., Maggi, A., Martino, M., Migliaccio, F. and N.
Tselfes (2006). “Exploitation of GOCE data for a local estimate of gravity
field and geoid in the Piemonte area (northern Italy)”. In Atti del 3rd
International GOCE User Workshop (pp. 6-8).

Baumann, P. (2010a). OGC WCS 2.0 interface standard—core. Open Geospatial
Consortium Inc., Wayland, MA, USA, OpenGIS® Interface Standard OGC.

Baumann, P. (2010b). The OGC web coverage processing service (WCPS)
standard. Geoinformatica, 14(4): 447-479.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F.
and D. Winer (2000). Simple object access protocol (SOAP) 1.1.

Brovelli, M. A., Mitasova, H., Neteler, M. and V. Raghavan (2012). Free and open
source desktop and Web GIS solutions. Applied Geomatics, 4(2): 65-66.

Cannata, M., Molinari, M. E., Luan, T. X. and N. H. Long (2012). Web Processing
Services for Shallow Landslide. International Journal of Geoinformatics,
8(1): 25-34.

De la Beaujardiere, J. (2006). OpenGIS® web map server implementation
specification. Standard Specification, 06-042.

Di Leo, M. and M. Di Stefano (2013). An Open-Source Approach for Catchment's
Physiographic Characterization. In AGU Fall Meeting Abstracts (Vol. 1, p.
06).

Díaz, L., Granell, C., Gould, M. and J. Huerta (2011). Managing user-generated
information in geospatial cyberinfrastructures. Future Generation
Computer Systems, 27(3): 304-314.

Fenoy, G., Bozon, N. and V. Raghavan (2013). ZOO-Project: the open WPS
platform. Applied Geomatics, 5(1): 19-24.

Flanagan, D. (2006). JavaScript: the definitive guide. O'Reilly Media, Inc.

Gangodagamage, C., Belmont, P. and E. Foufoula‐Georgiou (2011). Revisiting

scaling laws in river basins: New considerations across hillslope and fluvial
regimes. Water Resources Research, 47(7).

GeoExt Community (2010). GeoExt Documentation, available at:
http://www.geoext.org/docs.html [accessed 24 November 2014].

Gosling J., Joy B., Steele G., Bracha G. and A. Buckley (2013). The Java
Language Specification, Java SE 7 Edition. Addison-Wesley Professional.

Hazzard, E. (2011). OpenLayers 2.10 Beginner's Guide. Packt Publishing Ltd.

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

129

Heyman, J., Byström, C. and J. Hamrén (2011). User load testing tool for web
services, ESN Social Software, 2011-11-05, available at: http://locust.io
and version 0.4 of Locust, https://github.com/locustio/locust [accessed 24
November 2014]

Hogan, B. P. (2011). HTML5 and CSS3: Develop with Tomorrow's Standards
Today. Pragmatic Bookshelf.

Hunter, J.D. (2007). Matplotlib: A 2D Graphics Environment, Computing in Science
& Engineering, 9(3): 90-95

International Organization for Standardization and International Electrotechnical
Commission, ISO/IEC 9899 (1999), Programming languages—C

Lupp, M. (2007). Styled layer descriptor profile of the web map service
implementation specification. Open Geospatial Consortium Inc. OGC, 1(0).

Neteler, M., Bowman, M. H., Landa, M. and M. Metz (2012). GRASS GIS: A multi-
purpose open source GIS. Environmental Modelling & Software, 31: 124-
130.

OpenOffice.org (2010). Python-UNO bridge, available at:
http://www.openoffice.org/udk /python/python-bridge.html [accessed 24
November 2014].

Owonibi, M. and P. Baumann (2012). “D-WCPS: A Framework for Service Based
Distributed Processing of Coverages”. Proc. GEOProcessing 2012, The
Fourth International Conference on Advanced Geographic Information
Systems, Applications, and Services, Valencia, Spain, January 30, 2012,
pp. 215 – 221.

Reitz, K. (2012). Requests: HTTP for Humans, available at: http://docs.python-
requests.org/en/latest [accessed 24 November 2014].

Romero, A. V. (2010). VirtualBox 3.1: Beginner's Guide. Packt Publishing Ltd.
Chicago

Schut, P. and A. Whiteside (2007). OpenGIS web processing service. OGC project
document.

Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Civ. Eng,
101, 1258-1262.

Tarboton, D. G., and D. P. Ames (2001). “Advances in the mapping of flow
networks from digital elevation data”. World water and environmental
resources congress USA: Am. Soc Civil Engrs. pp. 20-24.

The Apache Software Foundation (2013). Apache HTTP Server Version 2.2
Documentation. Available at: http://httpd.apache.org/docs/2.2 [accessed
24 November 2014].

International Journal of Spatial Data Infrastructures Research, 2014, Vol.9, 107-130

130

The Apache Software Foundation (2013). Apache Tomcat 7 – Documentation
Index. Available at: http://tomcat.apache.org/tomcat-7.0-doc/index.html
[accessed 24 November 2014].

Turton, I. (2008). “Geo tools” In Open source approaches in spatial data handling
(pp. 153-169). Springer Berlin Heidelberg.

Van Rossum, G. (2007). “Python Programming Language”. In USENIX Annual
Technical Conference.

Vieux, B. E. (2001). Distributed hydrologic modeling using GIS. Springer
Netherlands.

Vretanos, P. A. 2010. OpenGIS Web Feature Service 2.0 Interface Standard. Open
Geospatial Consortium Inc, Version, 2(0).

Wilson, J. P., and Gallant, J. C. (2000). “Digital terrain analysis”, Terrain analysis:
Principles and applications, 1-27.

Youngblood, B. (2013). GeoServer Beginner's Guide. Packt Publishing Ltd..

Zhang, J. F., Wang, J. X., X. R. Jia (2010). Design and implementation of Data
Maintenance System based on ExtJS [J]. Railway Computer Application, 1,
014.

